If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2+120x+41=0
a = 80; b = 120; c = +41;
Δ = b2-4ac
Δ = 1202-4·80·41
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-16\sqrt{5}}{2*80}=\frac{-120-16\sqrt{5}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+16\sqrt{5}}{2*80}=\frac{-120+16\sqrt{5}}{160} $
| 2x+5/7=-x+11 | | -9x-54=-207 | | -42-x=51 | | 15/45=6/15x | | .2(x)+x=42000 | | 2x-4=1x+6 | | A=5/3(h-71) | | .8–3x–x=12 | | 1/5x-2/5=1/10x+6/10 | | 235345435=98e24 | | 4n+6-2n=2n+5 | | 8x-8=3x-+7 | | x/2-12=3+x | | 2345678=46a | | 9x-4=2x+2 | | 5v-3=6v-4 | | 2c+5=1c-13 | | 2-2r=-10 | | 45=4.5x+9 | | 4x+2=7-9x | | 4.5-1.5=3x+4.5 | | -2/w+1=-3 | | 11x+6+33x-2=180 | | x³+2x=91 | | 5x+2/2−5x−2/4=3 | | 11/k=7 | | 5/11=v/9 | | 7(x-)=49 | | 3r-4/r=6/9 | | 7-(x-1)=12 | | 1-6x=55 | | -6(7x+5)=15 |